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The influence of the surface microgeometry in rheometry is investigated using the correlation between
experiments and numerical simulations of the flow in plate–plate rotational geometry. The presence of
micropillars or microchannels on the plates induces effective or apparent slip of the fluids at the walls
generating a ‘‘dynamic hydrophobic surface’’. The end/edge effects and the gap error are first estimated
for the plate–plate smooth geometry, the computational results being found consistent with the per-
formed experiments. The comparison between the measured torques in smooth and microchannels pat-
terned configurations are analyzed using the numerical simulations performed by the Fluent code for the
Newtonian fluid and the Carreau model.

The present study demonstrates that hydrophobic effects can be induced at the walls, without the vio-
lation of the no-slip condition, by changing the local flow spectrum due to the presence of patterned sur-
faces at the solid boundary. The results confirm that computational rheometry is an useful tool not just to
interpret the experimental data but to calculate the errors of the measurements, as well as to explore and
model flow phenomenon as the apparent slip.

The applications of the paper are meant to develop novel testing procedures in rheometry and to design
micro-patterned surfaces for the control of slip/adherence of simple and complex liquids in microfluidic
devices.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Microfluidics is today one of the most dynamic domain of study
in engineering, especially in relation with novel Lab-on-a-Chip
applications which involve the flows of simple and complex fluids
[1–3]. One important subject of investigation in microfluidics is the
prediction of the fluid behavior in the very vicinity of the walls. Is
the fluid slipping or not to the wall? [4,5]; is the surface hydro-
philic or hydrophobic in respect to a particular dynamic process?
[6–8]; which is the most indicated pattern of the wall to induce
hydrophobicity? [9–11], are inevitable questions whose answers
would be an important impact in the design procedure of the
new devices and applications [12]. Therefore, the control of wall
adherence and degree of slipping become central topics for the
fundamental studies in microfluidics. If the material surface and
the fluid sample are well defined, in order to control the degree
of fluid adherence to the walls then we have to design the proper
micropattern which induces the desired phenomenon (i.e. total/
partial adherence or slipping). The rheological bulk properties of
liquids are experimentally determined using rheometers and spe-
cial designed measurements procedures based on viscometric
flows [13]. In all commercial rheometers (rotational or capillary),
the solid surfaces in contact with tested liquids are normally
smooth and the slip or perfect adherence of the samples to these
surfaces are analyzed and interpreted for each type of measure-
ment, mainly in relation with the microstructure and formulation
of the liquid samples [14–17].

The goal of the present study is to investigate and analyze the
influence of patterned surfaces in rheometry, to model the flow
in plate and plate rotational geometry and to understand how
the presence of microgeometries on the plate’s surface induces
the apparent slipping at the wall and creates ‘‘dynamic hydropho-
bic surfaces’’, even if the fluid is considered to adhere to the solid
walls.

In 1975, professor Ken Walters published Rheometry [18], the
first book dedicated exclusively to the measurements procedures
of the rheological properties of non-Newtonian fluids. In Introduc-
tion, the author presented one main objective of this discipline
(which is working in ‘‘tandem’’ with rheological modeling and
numerical simulations [19,20]): ‘‘to determine the behavior of
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non-Newtonian liquids in a number of simple flow situation using
suitable defined material functions’’ [18].

To fulfill this objective it is necessary not only to find general/
universal solutions for the equation of motion, but also to impose
proper boundary conditions for the working domain. However, in
rheometry (especially for complex fluids) it is difficult to always
put well posed boundary conditions, since the viscoelastic solu-
tions might need ‘‘more boundary conditions than are supplied
by the no-slip condition’’ [18].

In rotational rheometry (in particular plate–plate configuration)
the boundary conditions are directly related to the fluid behavior
at the walls (adherence or slip) and to the shape of the free surface
at the edge of the plates (which is aprioric unknown). If the no-slip
condition is normally accepted at the plates (considered to be per-
fectly smooth surfaces), it is almost impossible to control the
boundary condition at the edge of the geometry.

Ken Walters inferred the importance of boundary conditions in
rheometry and their direct connection to the quantification and
interpretation of the experimental errors; in consequence, each
of the chapters from Rheometry includes a paragraph dedicated
to the analysis and discussion of possible sources of errors.

In the present paper we are mainly concerned with two catego-
ries of errors mentioned by Ken Walters in Ref. [18]: (i) edge and
end effects, respectively (ii) instrument imperfections. Both are
related with the fact that boundary of the flow domain is not pre-
cisely defined, and this is not referring only to the unknown free
surface at the edge of the plates, but also with the deviation of
the real geometry of the plates from the calculus geometry (due
to misalignment, lack of parallelism, tilted axes).

We shall refer to these errors as end/edge effects and gap errors;
we suppose that no-slip condition to solid walls holds and the free
surface between the plates is cylindrical and in contact with the
atmospheric pressure. End effects include inertia influence in a
finite geometry (onset of secondary flows) and the error induced
by the approximation of the real free surface of the sample at the
edge with a cylindrical surface. Gap error is considered to be gen-
erated mainly by the non-parallelism of the plates, so the real gap
is not constant along the surfaces. Since the goal of the work is to
investigate the influence of pattern plates on the measurements in
plate–plate geometry, it is compulsory to evaluate first the contri-
bution of the end effects and gap error on the experiments per-
formed for the smooth (commercial) plates, see Refs. [21–23].

The structure of the paper is the following: Section 2 is dedi-
cated to the characterization of fluid samples and the measure-
ments of the torques in simple shear for the smooth and
patterned surfaces. A presentation of the surfaces microgeometry
is also made. In Section 3 the gap error is analyzed in relation to
a thin film (lubrication) analytical Stokes solution for rotational
non-parallel surfaces. The results from numerical simulations of
Newtonian and generalized Newtonian fluids (Carreau model) in
plate–plate smooth and patterned configurations are shown in Sec-
tion 4. Finally, in Section 5 the experimental and numerical results
are analyzed and the conclusions of the work are presented.
2. Experimental

The investigations are performed with the Anton Paar Physica
MC301 rheometer in controlled strain mode using the parallel
plates configuration with diameters of 25 mm, respectively
50 mm, at constant temperature within a range from 10 �C to
25 �C. The reference values for the samples shear rheology are
obtained using the cone and plate configuration (cone diameter
of 50 mm and 1� angle). In experiments the upper plate was always
the regular commercial stainless steel plate. Several lower plates of
different materials and patterns have been tested: (i) current lower
plate of the rheometer (PN-plate), (ii) perfectly smooth silicon
plate (Si-plate), (iii) silicon plate with pillars pattern (Si-pillars),
(iii) copper alloy plate with microchannels pattern (channels
plate).

Silicon wafers of 76 mm in diameter were processed at the IMT
Bucharest (National Institute for Research and Development in
Microtechnologies) using photolithography and DRIE (Deep Reac-
tive Ion Etching) techniques to produce surfaces with pillars pat-
tern, see also Ref. [24]. The plates patterned with parallel
microchannels were obtained by classical mechanical procedure,
see Fig. 1.

The most difficult part of the experimental protocol was to
obtain a working set-up with minimum alignment and parallelism
errors of the lower plates, relative to the rotational upper geometry
plate. First, the horizontal position of the original lower plate was
adjusted and the calibration to some prescribed gaps between the
plates was performed using the measurements in three points of
normal force between the upper plates and the feeler gauges of
50 lm and 100 lm (nominal height) mounted on the lower plate.
The zero gap corresponds to the position where the measured nor-
mal (axial) force against the upper plate is zero. Therefore, in our
case the prescribed nominal gap of the rheometer indicates actu-
ally the lowest gap height between the plates.

Each manufactured lower plate is fixed on the rheometer
lower plate and the described calibration was performed before
starting a new measurement. However, this procedure did not
eliminate the lack of parallelism between the tools and the mis-
aligned plate–plate problem generated by the gap variation along
the contact surfaces. Using a set of feeler gauges of 40 lm,
50 lm, 60 lm, 70 lm, respectively 150 lm and 160 lm, we mea-
sured a gap difference between opposite edges of the 25 mm
plate diameter of approximate 10 lm (for all nominal gaps
magnitude).

The samples used in experiments are two Newtonian liquids:
Si-oil (silicone oil, with nominal viscosity of 0.4 Pa s at 20 �C) and
En-oil (10W50 engine oil, with nominal viscosity of 0.4 Pa s at
10 �C and 0.275 Pa s at 20 �C), and a PIB-solution, a weakly elastic
polymer solution of polyisobutylene with Mw = 0.5 mil. (from
Sigma Aldrich) in En-oil, with zero shear viscosity of 1.55 Pa s at
10 �C and 0.9 Pa s at 20 �C.

The reference temperature for each test and fluid was fixed as
function of the measured temperature of the patterned lower plate.
This temperature cannot be strictly controlled by the Peltier sys-
tem of the rheometer, in consequence the shown data are obtained
at different temperatures.

The oscillatory shear test of PIB-solution is presented in Fig. 2.
The measured data disclose two phenomena: (1) the decreasing
of the measured viscosity with reducing the gap in plate–plate con-
figuration (so called the gap error effect), and (2) the influence of
the lower plate quality on the measured torque. The first phenom-
ena is well known in simple shear rheology and was recently inves-
tigated and analyzed in relation to the shear rheometry at high
rates [25–28], see also Refs. [21–23]. The influence of the plate
quality (assuming the plate is smooth) is determined by the adh-
erece of the fluid at the material surface and possible slip occu-
rence. In Fig. 2 the measured differences in complex viscosity
between the PN-plate and Si-plate are up to 20%, for the same
value of the gap.

The samples (Newtonian liquids and PIB-solution) are not
expected to exhibit significant slip at the walls of commercial
plates. However, the measurements performed with perfect
smooth Si-plates indicate possible presence of slip for PIB-solution
in plate–plate geometry, the phenomenon which seems to be
absent in the cone–plate configuration (where the recorded data
are in the range of the experimental errors for the two tested
smooth lower plates).
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Fig. 1. The patterned plates used in experiments: (a) silicon pillars plate with uniform distribution of cylindrical pillars on the surface (by courtesy of IMT Bucharest), (b)
channels plate (by courtesy of TU Darmstadt). The average dimensions of micro-geometries and the working setups are also shown (c).
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Fig. 2. The dependence of the complex viscosity (a) and the dynamics moduli of the PIB-solution (b) on the gap height and the quality of the smooth lower plate. Testes
performed in oscillatory controlled strain frequency sweep at 0.1 [�] strain amplitude at 20 �C, with upper plate diameter of 50 mm. The reference measurements are
obtained with cone and plate geometry (CP); the slopes of increasing G0 and G00 with frequency x are shown.
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The gap error effect in torsional (plate–plate) flow is associated
to the decreasing of the measured viscosity as the gap height h is
decreasing. This phenomenon is generated by the geometrical non-
conformity of the working configuration in comparison to the ideal
geometry used in computations. In particular, the error is mainly
induced by the non-parallelism of the plates. In this case the gap
height is not homogeneous between the plates (as we have already
reported). The zero gap procedure indicates the lowest value of the
gap height, same value being used to command the rim shear rate.
In consequence, the measured torque Tm will be less than the the-
oretical torque Tt because the real gap is actually larger than the
imposed one.

The theoretical torque in plate–plate configuration is consid-
ered to be identical with the corresponding torque in a steady tor-
sional flow of an equivalent Newtonian fluid with viscosity g0,

Tt ¼
pxR4

2h
g0; ð1Þ
where x is the relative angular speed between the plates, R is the
radius of the plates and h is the constant height of the gap.

In experiments, the measured shear stress rR and the com-
manded shear rate _cR are calculated with the relations

rR ¼
2Tm

pR3 ; _cR ¼
xR
h
; ð2Þ

the computed viscosity function being defined as:

g :¼ rR

_cR
: ð3Þ

The formula of the shear rate in Eq. (2)2 is valid only for per-
fectly smooth parallel plates. For non-parallel discs or patterned
plates the value of _cR represents an apparent shear rate because
the local flow is no more a homogeneous pure shear in the gap
(especially for lower patterned surfaces).

Relations (1) and (2) are valid for no-slip boundary conditions
and do not take into consideration neither the end-effects (the
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plates are considered infinite), the inertia influence (Reynolds
number tends to zero) nor the Weissenberg correction [13,18].

We have to mention that Weissenberg correction (represented
by the term @ ln rR=@ ln _cR applied to (2)1 is not related to the gap
effect, but with the non-linearity of the viscosity function (if
@ ln rR=@ ln _cR ¼ 1 the formula (2)1 is correct), see Fig. 3.

The gap error effect, induced by the lack of parallelism between
the plates, on the computed viscosity (3) becomes more relevant as
the gap is smaller and the fluid viscosity is lower. Some other phe-
nomena which may influence the calculation of viscosity (the end-
effects, inertia, Weissenberg correction for the shear stress at the
rim in the non-linear viscoelastic regime) cannot explain the
recorded relatively large differences between the measured viscos-
ity at different gaps in the plate–plate configuration, especially at
h < 0.2 mm, see for details Refs. [21,23].

The influences of gap and patterned surface in simple shear of
PIB-solution and En-oil for a Si-pillars and channel plate patterned
surfaces are presented in Figs. 4 and 5 (the effect of microgeometry
on the measurements in plate–plate rheometry was previously
reported by the authors in Ref. [29]).

All performed experiments in shear (different samples, temper-
atures and shear rates) confirm that, at the same apparent shear
rate, the measured viscosity is decreasing by decreasing the gap
height. We also recorded lower values of the measured viscosity
for patterned plate as compared to the values measured viscosity
for smooth (normal) plate, at the same gap and same apparent
shear rate.

The difference between smooth and patterned surfaces are also
noticed during stress relaxation of PIB-solution. For smooth plates
stress relaxes almost immediately to zero at any gap; for patterned
plates the relaxed shear stress reaches fast a small but constant
residual stress, its value being increased by decreasing the gap,
see Fig. 6.

The experimental investigations in shear are summarized in
Fig. 7, where the measured viscosity as function of gap is repre-
sented for different lower plate quality and microgeometries at
the apparent shear rate of 50 s�1.
3. Gap influence

The gap error in plate–plate geometry is remarkable for nomi-
nal gaps below about 200 lm. The phenomenon was probably
the first time investigated in Ref. [21] and in the last decade several
studies on the gap error were published by Stokes et al., e.g. Refs.
[22,23,25], in the most recent one being proposed a GLM
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(generalized linear model) methodology to analyze the experimen-
tal data and estimate the gap error [23]. The subject has become of
interest especially in relation with the novel procedures to mea-
sure rheological properties at high and very high shear rates based
on the microgap rheometry, see Refs. [25–28].

In classical shear rheometry is generally accepted to represent
the gap error by dimension he defined as:

he ¼ h
g0

gmðhÞ
� 1

� �
; ð4Þ

where h is the prescribed gap (the input value for the rheometer,
also the value used to compute the apparent shear rate _cR) and
gm(h) is the measured viscosity (3) for the imposed shear stress
(2)1 [21,23]. The gap errors (4) are calculated for our data and the
values he(h) are shown in Fig. 8.

In Fig. 8 the reference value for g0 is given by the measurement
in cone-plate configuration. In all cases, within an experimental
error of ±2%, g0 almost coincides with the vicosity measured in
plate–plate geometry for 300 lm gap.

The calculated dimension he in (4) does not really represent the
true error in the measurement of the gap; it is just a ‘‘virtual
dimension’’ added to h in order to calculate accordingly to (3)
the correct viscosity (at given velocity of the upper plate and the
measured rR).

In the case of a fluid with constant viscosity, no-slip conditions
and smooth plates surfaces, in the value of he include 3 types of
errors: (i) gap error (lack of plates parallelism/misalignment,
which is considered to be dominant), (ii) end/edge effect (the real
edge surface of the sample is not cylindrical), (iii) inertia/presence
of secondary flows (Re number influence).

The effect of patterned surfaces observed in our tests (see Figs. 7
and 8, for example) is not generated by the one of these phenom-
ena. The influence of surface quality on the measurements is inves-
tigated and analyzed in the next paragraph using the results of
numerical simulations of the flow field in the gap.

In the absence of the complete 3D topography of the plates and
accurate 3D measurements of plates misalignments, the gap error
can be explained, and to some extend even computed, using the
thin film theory [30,31].

The velocity distribution in a thin film of a Newtonian fluid
between two non-parallel discs of radius R and gap h� R, see
Fig. 10, is approximated by the relation,

v ¼ 1
2g0r

zðz� hÞ @p
@u
þ rx

h� z
h

; ð5Þ
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Fig. 4. The gap influence; measured viscosity at constant apparent shear rate (5 s�1, 50 s�1, 500 s�1, respectively) for PIB-solution (a) and En-oil (b) at 10 �C (Si-pillars pattern
lower plate; upper plate diameter of 25 mm).
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Fig. 8. The gap error at constant shear rate for En-oil and PIB-solution (PN-plate and
channel plate), see Fig. 7. The error he is much larger for the patterned channel plate
in comparison with the smooth normal plate. Fig. 10. The correction function j(x) and its variation with the gap for different

values of e [lm].
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where x is the constant relative angular velocity between the
plates, v = vu(r, z) is the rotational velocity and g0 is the fluid
viscosity.

Relation (5) is directly obtained from the integration of the
Navier–Stokes equation in the limit of zero Reynolds number, with
vr, vz� vu.

The pressure distribution in the gap is obtained from the inte-
gration of the continuity equation, i.e.

R h
0 @v=@udz ¼ 0, respectively

as solution of Ricatti equation

p00 þ 3
h

p0 þ k

h3 ¼ 0; ð6Þ

where p = p(h), for h 2 [h1, h2] with h ¼ h1 � e
u0

u, for u 2 [0, u0],
e = h1 � h2 and k ¼ 6g0r2xu0

e , see Fig. 9.
Relation (6) is reduced to the equation p0 ¼ C

h3 � k
h2, with

C ¼ 2k h1h2
h1þh2

, and the relative pressure distribution within the gap
is:

p ¼ 6g0xr2u0

e
1
h
� 1

h1 þ h2
� 1

h2

h1h2

h1 þ h2

� �
; ð7Þ

where p = 0 for h = h1 and h = h2.
The shear stress acting on the upper plate is calculated with the

formula,

r ¼ g0
@v
@z z¼h

¼ g0
rx
h
þ eh

2rh0
p0

¼ g0
rx
h

1þ 3
2h1h2

hðh1 þ h2Þ
� 1

� �� �
; ð8Þ
Fig. 9. Non-parallel plate–plate configuration with variable gap h.
and the torque (2)1 is computed by the relation,

T� ¼ u0

e

Z R

0

Z h2

h1

rr2drdh; ð9Þ

respectively, for u0 = 2p and x = e/h2, the shear stress at the rim of
the plate becomes:

r�R ¼
2T�

pR3 ¼ jðxÞ � g0 _cR; ð10Þ

where

jðxÞ ¼ 2 �1
x

lnð1þ xÞ þ 3
2þ x

� �
: ð11Þ

The expression (11) is the correction function for the computed/
measured viscosity (3), i.e. j(x) = gm/g0, if the two plates are not
parallel (j(x) = 1 for x = 0, respectively for h1 = h2), see Fig. 10.
We have to remark that in experiments the input nominal gap h
is given by the values of h2.

Relations (7)–(11) are found in classical books of fluid mechan-
ics as particular solution of the Reynolds lubrication equation for
slider bearings [32,33], but here the solution is obtained by direct
integration of the Newtonian thin film flow in cylindrical
coordinates.

This calculus is qualitatively relevant for our study because it
proves that non-parallelism of the plates in rotational rheometer,
represented by the value of e, generates a lower measured viscosity
than expected, as the nominal gap h = h2 is decreasing. Relation
(11) and the diagrams from Fig. 10 might also offer a quantitative
correction of the measured viscosity gm. This result is explored in
the next sections of the paper, considering the measured value
e = 10 lm for the gap difference (value reported in §2).

4. Numerical simulations

Numerical solutions for the plate–plate geometry, respectively
plate–channels geometry, were obtained using the commercial
Fluent code for the Newtonian fluid and Carreau model,

gð _cÞ � g1
g0 � g1

¼ 1þ ðk _cÞ2
h in�1

2
; ð12Þ

where _c is the local shear rate, g0 is zero shear viscosity, g1 is the
infinite viscosity, n is the shear thinning exponent and k is the time
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constant. The Carreau model is one of the most versatile and com-
mon relation to represent the shear thinning behavior with a con-
tinuous and derivable viscosity function between finite limits (g0,
respectively g1).

Fluent is a robust code which solves the Navier–Stokes flows
with constant or variable viscosity using the finite volume tech-
nique. The simulations were performed using the steady viscous
laminar solvent with SIMPLE (semi-implicit method) algorithm
for pressure–velocity coupling and second order discretization.
The relative convergence error is 10�8 for the equation of continu-
ity and velocity components.

The input viscosities for the Newtonian flows were
g0 = 1.06 Pa s and g0 = 0.1 Pa s and the Carreau model was defined
by the following constants: g0 = 1.06 Pa s, g1 = 1.0 mPa s, k ¼ 10 s
and n = 0.7, 0.2 and �1, respectively.

Solutions are obtained for the plate diameter d = 25 mm at dif-
ferent gaps in the range 25 lm 6 h 6 300 lm. The upper plate is
rotated with constant speed, corresponding to the shear rate (2)2

in the interval _cR 2 ½10�2 � 103� s�1 and the lower plate is at rest.
The rotational plate has always been considered smooth and the
lower plate has been taken to be smooth or patterned with chan-
nels geometry (see Fig. 1(b and c)). No-slip boundary condition is
imposed at the plates surface and the edge of the geometry is con-
sidered a cylindrical surface at constant pressure.

The grid was built based on uniform distributed hexahedral
similar mesh cells for all configurations, so the number of nodes
varies with the gap and type of geometry (normal or channel plate)
between 2 and 3 million, with the remark that density of the nodes
(respectively cells) was increasing at the edge of the plates. The
channel geometry was discretized with quad-elements (type
map), respectively tri-elements (pave type) were used to mesh
the upper moving plate.

One of the aim of the simulations was to compute the torque
acting on the upper plate of the PN geometry (Tm = Tc) and to com-
pare the input viscosity, g0 or viscosity function (12), to the
Table 1
Theoretical and computed torques at h = 100 lm and _c ¼ 1s�1.

Theoretical torque Tt (lN m) 2D axial-symmetric (finite)

Tc Tc/Tt

3.25204 3.49107 1.07

Table 2
End-effect and gap influences: 2D axial-symmetric and 3D simulations at _c ¼ 1 s�1. The re

h (lm) 200 100 75

2D 3D 2D 3D 2D

Tc/Tt 1.176 1.07 1.07 1.03 1.05
Tc/T200 1 1 0.913 0.96 0.893

12.38 mm 12.32

V = 0

(a)

Fig. 11. The end-effect; the spectrum of the computed radial velocity at the edge of th
R = 12.5 mm, h = 100 lm and _c ¼ 1 s�1).
calculated viscosity from (3). The results for the Newtonian fluid
from Tables 1 and 2 correspond to _c ¼ 1 s�1 (the ratio Tc/Tt being
almost identical for the whole range of simulations).

The results from Table 1 show that end-effect is less important
in 3D than in 2D computations, however the error represented by
the ratio Tc/Tt is decreasing by decreasing the gap, see Table 2. The
end-effect is determined by the imposed boundary condition for
pressure, which induces a secondary flow in the vicinity of the
plate edge and an increase in the local wall shear stress, see
Fig. 11. Hence, the calculated viscosity from numerical simulations
is always higher than the input viscosity.

If the reference value for torque is considered at a precise value
of the gap (e.g. h = 200 lm), then the relative measured torque Tc/
T200 (and in consequence, the measured viscosity) is monotonically
decreasing by the gap magnitude, see Table 2. This phenomenon is
not present in the ‘‘infinite geometries’’ and is a measure of the
influence of the end/edge effect with reducing the gap. However,
this effect is always observed in experiments where the end-effect
cannot be avoided.

In reality, the decrease of the measured viscosity by the
decreasing of the gap is more significant than the numerical results
from Table 2 show, due to the gap error effect.

Indeed, the simulations of the rotational flows between non-
parallel (oblique) plates for e = 10 lm and x = 0.1 (h = 100 lm),
respectively x = 0.2 (h = 50 lm), confirm the analytical results from
relation (11), see Table 3. The simulations at _c ¼ 10s�1 generate
very similar values for the correction factor, so we are confident
to consider that j is independent on the apparent shear rate.

The wall shear stress (WSS) distributions on the diameters of
the upper and lower plates are represented in Fig. 12 for perfect
parallel plates and tilted (oblique) configuration. In the last case
the non-symmetric stress distribution justifies the lower measured
torque than in the case of perfect alignment plates.

The analysis of the two effects: (i) end effect (due to secondary
flows), and (ii) gap error (due to the gap non-homogeneity) in rela-
2D axial-symmetric (infinite) 3D geometry

Tc Tc/Tt Tc Tc/Tt

3.25204 1.0 3.35398 1.03

ference value for the torque, T200, is taken a gap of 200 lm.

50 25

3D 2D 3D 2D 3D

1.018 1.034 1.009 1.013 1.003
0.945 0.88 0.934 0.86 0.93

5 mm

V = 0
R

(b)

e plates: (a) 2D simulation, (b) 3D simulation (Newtonian fluid, smooth geometry,



Table 3
Computed torques for the normal parallel plates TcPN and for the oblique plates Tco; j
is the correction factor from (11) and jn is the value calculated from numeric with
e = 10 lm (d = 25 mm, apparent shear rate _c ¼ 1 s�1, g0 = 1.06 Pa s).

h (lm) 100 50

TcPN (lN m) 3.354 3.283
Tco (lN m) 3.188 2.983
j 0.95 0.908
jn 0.95 0.9

Fig. 12. Wall shear stress distribution on the diameters of the plates for h1 = 60 mm
and h2 = 50 mm, see Fig. 9 and Table 3.

158 D. Broboana et al. / Journal of Non-Newtonian Fluid Mechanics 222 (2015) 151–162
tion to the experimental data for smooth and pattern surfaces is
presented in the last section of the paper.

Simulations for the 3D configuration were the lower plate is
patterned with channels, see Fig. 1(b), are performed only for par-
allel plates. The results disclose the oscillations of the computed
wall shear stress in the gap (due to the presence of the channels
on the lower plate) and lower values of WSS than the correspond-
upper plate

median plane

(b)

(a)

Fig. 13. Computed shear stress distribution for the Newtonian fluid (the values vary from
median plane with a detail (h = 100 lm, _c ¼ 1 s�1, g0 = 1.06 Pa s). (For interpretation of th
this article.)
ing normal smooth configurations for the Newtonian fluid and Car-
reau models with positive n – exponent, see Figs. 13–15.

The numerical simulations offer the possibility to get important
details not only on the kinematics of secondary flows in the micro-
channels, see Figs. 16 and 17, but also on the viscosity distribution
in the gap for the shear thinning fluids, Fig. 18. In Figs. 16 and 17
some of the trajectories exit from the gap. This phenomenon is
an effect of numerical errors due to the imposed boundary condi-
tions at the edge of the plates corroborated with the mesh quality
(the mesh density being imposed by the available computation
capacity). However, the computed flow rate exiting from the gap
is of order of 10�10 lg/s and the transported flow rate has the order
of 1 lg/s, so the influence of this error is very limited and affects
the kinematics only in the very vicinity of the gap rim.

The quantitative comparison between the computation for
smooth and patterned plates (with no-slip boundary conditions)
sustains the concept of the apparent slip at microgrooved walls,
which has to be distinguished from the effective slip observed at
microstructured surfaces [34–36], see also Ref. [37]. The numerical
results and the experimental data from §2 are analyzed in the next
paragraph.
5. Analysis and conclusions

The first step in modeling the torsional flow between patterned
surfaces has to be the correct representation of the flow dynamics
in the corresponding smooth geometry. The problem needs a care-
ful analysis when the results of the modeling (analytic or numeric)
are compared to the experiments quantitatively. The real configu-
ration of the tested geometry might be locally quite different from
the assumed calculus geometry, and the discrepancy between the
two configurations is most probably increasing by decreasing the
gap. Such discrepancies may induce errors in the calculus of global
parameters, as torque friction, and generate false conclusions on
the fluid behavior at the boundaries of the plates.

Many applications of simple and complex flows in the presence
of patterned surfaces are related to microfluidics and tribology. The
major goal of the studies is to control the boundary conditions, to
generate slip at the walls [38–40] or to create hydrophobic surfaces
for reducing the drag [41,42]. Several microgeometries (pillars,
blue color to red color, see Fig. 12 for the magnitude of WSS): (a) upper plate, (b)
e references to color in this figure legend, the reader is referred to the web version of
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(a)

(b)

Fig. 14. Computed shear stress distribution for the Carreau models (n = 0.2 and n = �1) on the median plane: (a) _c ¼ 1 s�1, (b), _c ¼ 10 s�1 (h = 100 lm).
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Fig. 15. Wall shear stress distribution on the diameter of the upper (moving) plate for h = 100 lm: (a) Newtonian fluid (g0 = 1.06 Pa s, apparent shear rate as parameter), (b)
Carreau model (n – exponent as parameter).

(a) (b)

(c)

1 s-1 10 s-1 100 s-1

Fig. 16. Flow trajectories in the gap for the channels plate geometry (colored by the velocity magnitude): (a) Newtonian fluid g0 = 1.06 Pa s, (b) Carreau model with n = 0.7
(h = 100 lm, _c ¼ 10 s�1); (c) details with the flow trajectories for the Carreau model with n = 0.2 at _c ¼ 1 s�1, _c ¼ 10 s�1 and _c ¼ 100 s�1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Newtonian                                                    Carreau (n = 0.2)

Carreau (n = 0.7) Carreau (n = - 1)

Fig. 17. Details of the secondary flow patterns in the channels of the lower plate for the Newtonian and the Carreau models ( _c ¼ 1 s�1).

Fig. 18. Viscosity distribution in a channel for the Carreau model (n – exponent as parameter). Lower viscosity corresponds to the surface of the upper (moving) plate; shear
banding phenomena is observed for negative n-exponents (h = 100 lm, _c ¼ 1 s�1, _c ¼ 10 s�1).
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microgrooves, channels, strips) have been tested for those pur-
poses. Since it is not easy to obtain a complete description of the
flow kinematics in the vicinity of such surfaces, the target of the
studies is to evaluate the hydrophobicity of a given surface pattern
as function of the measured slip velocity.

But the observed slip velocity is not always the lack of adher-
ence of the fluid to the solid wall. In many applications the lack
of adherence is only apparent, the phenomenon being generated
by wall depletion, shear banding or the presence of multiphase
flows (i.e. the existence of the air in microgrooves).

The main aim of our work was to evaluate the contribution of
the patterned surface on the measurements in plate–plate geome-
try and to give a quantitative representation of the experimental
results. Firstly we have analyzed the contribution of the end effects
and the gap error for smooth plates under no-slip boundary condi-
tions. If the correction factor j (which represent the contribution
of the gap error, see Table 3) is corroborated with the end-edge
effect contribution from Table 2, one can compute the total relative
measured torque – (Tc/T200)T for the experiments performed in real
conditions, e.g. (Tc/T200)T = 0.90�0.934 ffi 0.84 for nominal gap of
h = 50 lm and e = 10 lm. Consequently the measured viscosity at
h = 50 lm will be only 84% of the viscosity recorded at the gap of
200 lm. We notice that this result is not determined by any slip
or lack of adherence at the plates surfaces.

Real or apparent slip might generate at macroscopic scale sim-
ilar consequences with the non-parallelism of the plates (gap
error) or with the presence of the micro-structures at the wall.
The decreasing of torque in plate–plate rheometry for patterned
surfaces in comparison with the smooth surface is such conse-
quence, see Fig. 7. In Table 4 computed torques are presented at
the upper plate (based on numerical simulations with no-slip
boundary condition) for normal and channel lower plates (TcPN,
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respectively TcCh) and also the relative torque aT = TcCh/TcPN. There-
fore, at the gap of 50 lm, and the same apparent rate, we expect a
decreasing in friction on the upper plate by 21% for patterned
lower plate, phenomenon which is determined by the change in
the flow kinematics within the gap, see Figs. 16 and 17.

A sketch of the simple shear flow in the vicinity of a smooth and
patterned surface is represented in Fig. 19. Here b is the real slip
length, with b⁄ = b + H, where H and d are the characteristic dimen-
sion of the microgeometry. The gap h and the applied velocity V�0
on the upper plate is the same in both cases. We assume that at
smooth surfaces the no-slip boundary condition is applied.

In the case of patterned plate (Fig. 19.b) we might have real
(effective) slip at the wall (slip velocity Vsw), slip at y = H (slip veloc-
ity Vs) or apparent slip (velocity Vas at y = d, d > H, with zero velocity
at y = H), which is associated to a high velocity gradient in the
vicinity of the wall. In all cases the velocity distribution discloses
the same value at y = d and identical patterns for y > d, so the real
slip cannot be easily differentiated from the apparent slip.

One procedure to analyze the existence of slip at the wall is
based on the definition of the structural parameter b⁄,
b� ¼ r�0
r�s
� 1

� �
h; ð13Þ
where r�0 is the measured shear stress at the upper plate of a
smooth geometry and r�s is the measured shear stress at the upper
plate of a geometry with patterned lower wall [29], see also Refs.
[34,35].

For a given microgeometry and r�0 > r�s , the computation of b⁄

might characterize the flow regime on patterned surface relative to
the flow at the smooth surface. A positive dimension br: = b⁄ � H
defines a flow regime with effective induced slip at the patterned
surface; if br < 0 the flow is associated to the apparent slip induced
by the plate’s microgeometry.

In the case of numerical simulations performed for the pat-
terned channels pattern with H = 240 lm, the value of br is nega-
Table 4
Computed torques for normal plate and channel plate (d = 25 mm, apparent shear
rate _c ¼ 1 s�1, g0 = 1.06 Pa s).

h (lm) 100 75 50 25

TcPN (lN m) 3.354 3.31 3.283 3.261
TcCh (lN m) 2.928 2.782 2.595 2.288
aT 0.87 0.84 0.79 0.7
b⁄ 14.94 14.28 13.29 10.71

Fig. 19. Simple shear flow in vicinity of smooth and pattern surfaces.
tive at all gaps, b⁄� H, see Table 4. Therefore the computed flow
regime is characterized by apparent slip on the patterned surface.

Fig. 20 shows the computed structural parameter b⁄ for the
experimental data from Fig. 7. Within the frame of our interpreta-
tion, the effective induced slip is present only for the Si-plate pil-
lars pattern (H = 9 lm, see Fig. 1a), and remarkable only for the
Newtonian oil with low viscosity.

This result is consistent with the statement that induced slip at
the patterned walls is effective for microgeometries with aspect
ratio around one (0.5 < H/d < 1.5) for height dimension H in the
range of microns or tens of microns (see Figs. 19 and 1).

In the case of channel pattern the aspect ratio is around one, but
the H value is large, i.e. H = 240 lm. In this case the microgeometry
induces an apparent slip and not an effective slip, since b⁄� H for
both samples, see Fig. 20.

This conclusion is confirmed by the results from Fig. 21. Here,
the results of computations are superimposed for the smooth
and patterned channels geometries (end/edge effects, gap error
correction, respectively the patterned surface effect) and compared
with the measured values (in this representation the assumption
that the relative computed correction coefficients have the same
values in the range of tested shear rates and viscosities has been
considered). The difference between the measurements and the
computations are in the range of 10% for the investigated domain.
Fig. 20. Variation of parameter b⁄ with the gap.

Fig. 21. Computed vs. experimental relative viscosity gm/g0 for h 6 100 lm (g0

corresponds at h = 200 lm).
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The present study demonstrates that hydrophobic effects can be
induced to the walls, without violating of the no-slip condition, by
changing the local flow spectrum due to the presence of patterned
surfaces at the solid boundary. The results confirm that computa-
tional rheometry is an useful tool not only to interpret the exper-
imental data and to calculate the errors of the measurements,
but also to explore and model flow phenomenon as apparent slip.

In particular, the work was dedicated to the investigation of the
influence of patterned surfaces on the measured torque in plate–
plate configuration. The correlations of the experimental data with
numerical simulations reveal the contribution of the patterned sur-
face on the flow dynamics within the gap and the possibility to
make the distinction between the effective and the apparent slip
induced by the microgeometry. The paper presented only numeri-
cal solutions for pure viscous and Carreau models. Of course, the
continuation of the work has to include the effects of elasticity,
but this approach is at the moment beyond the computational
capabilities available in our group.

This study is considered to be of interest for developing novel
techniques in rheometry (using for tests plates with well defined
micro-patterned surface) and in microfluidics, where the control
of boundary conditions and wall adherence are crucial for many
applications.
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